

Deployment of MIPv6 in operational networks

Presentation at the University of Passau, 02.05.2006

Wolfgang Fritsche, IABG

Overview of Mobile IPv6 (MIPv6)

Mobility in today's Internet

Rationale for Mobile IPv6 (MIPv6)

- Evolvement of the mobile Internet
 - Growing number of mobile Internet users
 - Growing diversity of mobile Internet devices (PDA, cellphone, smartphone, ...)
 - Increasing heterogenity of access networks (GSM, 3G, WLAN, WiMax, ...)
 - Efficient support of mobility in the Internet required
- Importance of transparency
 - Mobility support should be transparent to users and applications
- MIPv6 approach
 - MIPv6 offers this transparent mobility support by influencing the routing of IP packets

Mobile IPv6 example

Mobile Node registers at Home Agent

- Mobile Node sends Binding Update
- Home Agent replies with Binding Acknowledgement

Tunneling of traffic to Mobile Node

Network B Home Network A Mobile Internet or other Node IP backbone Visited Home Network C Agent Corresp. Node initiates communication with Mobile Correspondent Node and sends packets to MN's home address Node

2 Home Agent intercepts packets and forward them to the Mobile Node (proxy functionality) Visited

Reverse tunneling

2 Home Agent decapsulates packet from Mobile Node and forwards it to Correspondent Node Visited

Route optimization

Network B Home Network A Mobile Internet or other R Node IP backbone Visited Network C Home Agent Correspondent

- Mobile Node sends Binding Update to Corresp. Node C
- Corresp. Node C sends following packets directly to c/o address of Mobile Node

Visited

Node

Roaming

Operational requirements

Requirements for operational deployment of MIPv6

- Improvement of Mobile IPv6 scalability
 - Dynamic provisioning of configuration data on terminals and HAs
 - Load-sharing across HAs
- Improvement of reliability
 - Solutions for HA failover (no single point of failure)
- Control of mobility service
 - Service authorization based on a AAA infrastructure
- Enable offering of "premium" network features
 - On-demand and secure activation of fast handovers, QoS, etc.
- Integration of Mobile IPv6 in real-life environments
 - Coexistence with middle-boxes (firewalls, VPN concentrators, etc.)
 - Deployment of Mobile IPv6 in IPv4-only accesses

Overview of ENABLE project

- ENABLE at a glance
 - Research project funded by the European Commission
 - 8 European and one Chinese partner
 - Duration: 2006 2007
- Goal of ENALBE
 - Enable deployment of efficient and operational mobility as a service in large scale IPv6 network environments
 - Taking into account also the transition from current IPv4 networks
 - Research and contribution to standardization fora (IETF, 3GPP, etc.)
 - Validation through laboratory experiments (prototypes, testing, etc.)
- More information
 - ENABLE project web site http://www.ist-enable.org

Long Term Vision

ENABLE

targets

Today

Dedicated RANs optimized for specific services

- □ cellular (2.5-3G)
- □ Wireless LAN
- □ WMAN (WiMAX)

Step 1

Integration of heterogeneous RANs to offer efficient and cost-effective ubiquitous mobility

□ MIPv6 is the key

Step 2

Smooth migration to an all-IP network architecture

- □ all services over IP
- MIPv6 with fast handover support

Step 3

Fully mobile Internet

- tremendous growth in the number of terminals
- MIPv6 might suffer its age

Bootstrapping

- Goal
 - Addressing the operational requirement for dynamic provisioning of configuration data on terminals and HAs and MIPv6 service authorization
- Configuration data
 - HA address
 - ☐ Required on MN
 - ☐ Used for registering Binding Updates with HA
 - MN's Home Address
 - ☐ Required on MN
 - ☐ Used for communication with other nodes
 - ☐ Could change if home network will be renumbered
 - Keying Material
 - ☐ Required on MN and HA
 - ☐ Used to set up a security association (IPsec) between MN and HA

Service entities involved in bootstrapping

Bootstrapping architectures investigated by IETF

- Split scenario
 - Mobility Service Authorizer (MSA) is different from Access Service Authorizer (ASA)
 - Assignment of Home Agent done using DNS
- Integrated scenario
 - Mobility Service Authorizer (MSA) is the same as Access Service Authorizer (ASA)
 - Assignment of Home Agent done using DHCPv6

Steps of the split scenario

- Getting network access
 - Using DHCPv6 or IPv6 stateless address autoconfiguration
- Home Agent assignment done by DNS request from MN
 - Requesting for a FQDN of a HA (e.g. ha.service-provider.com)
 - Requesting for a MIPv6 service (e.g. mip6.ipv6.service-provider.com)
- Setting up an IPsec security association between HA and MN
 - Use of Internet Key Exchange version2 (IKEv2) for this purpose
 - For this purpose the HA may contact a PKI or AAA for MN authentication and service authorization
- Assignment of a Home Address to MN
 - Done within the IKEv2 exchange
 - MN could propose a Home Address
- Update of the MNs DNS entry with the new Home Address
 - Triggering of DNS update within Binding Update from MN to HA
 - HA updates DNS directly or further delegates this to AAA

Example message flow for split scenario

Steps of the integrated scenario

- Getting network access
 - Using DHCPv6 or IPv6 stateless address autoconfiguration
- Home Agent assignment done by DHCPv6 request from MN
 - HA is provided by the Mobility Service Provider
 - ☐ AAA of Mobility Service Provider provides HA to DHCPv6
 - ☐ DHCPv6 finally assigns HA to MN
 - HA is provided by Access Service Provider
 - ☐ Direct assignment of HA to MN by DHCPv6
- Remaining steps identical to split scenarion
 - Setting up an IPsec security association between HA and MN
 - Assignment of a Home Address to MN
 - Update of the MNs DNS entry with the new Home Address

Example message flow of integrated scenario

Contact

Wolfgang Fritsche

Manager Advanced IP Services

Phone: +49 89 6088-2897 Email: fritsche@iabg.de Web: www.iabg.de

This work has been partially supported by the European Commission FP6 IST ENABLE project.